

Alkinverbrückte Dreikerncluster mit Organo-Rhodium-Bausteinen

Thomas Albiez, Harald Bantel und Heinrich Vahrenkamp*

Institut für Anorganische und Analytische Chemie der Universität Freiburg, Albertstraße 21, D-7800 Freiburg

Eingegangen am 6. März 1990

Key Words: Trinuclear clusters / Alkyne bridging / Rhodium components

Alkyne-Bridged Trinuclear Clusters with Organo-Rhodium Moieties

Several approaches are utilized to incorporate rhodium-containing building blocks in alkyne-bridged trinuclear clusters. The metal exchange procedure allows to introduce a $Rh(CO)_3$ unit into cluster 1 with formation of $RuMoRhCp(CO)_8(\mu-MeC \equiv CMe)$ (6). Starting from dinuclear alkyne-bridged complexes, RhCp units are attached, as in $Co_2RhCp(CO)_6(\mu-HC \equiv CR)$ (10, 11) and $CoMoRhCpCp^*(CO)_5(\mu-HC \equiv CR)$ (12). Side reactions yield tetranuclear clusters with Co_2Rh_2 and Co_3Rh frameworks.

Die Vielfalt der Reaktivität metallorganischer Rhodiumverbindungen strahlt auf die Clusterchemie dieses Elements aus. Es sind hochmolekulare Rhodiumcluster bekannt¹, und rhodiumhaltige Mehrkernkomplexe wurden schon intensiv für Katalysestudien eingesetzt²⁾. Letzteres war auch für uns der Anlaß, rhodiumhaltige Cluster, speziell heterometallische, zu untersuchen. Solche Verbindungen waren noch vor kurzem in relativ kleiner Zahl bekannt³⁾, wobei wesentliche Syntheseverfahren auf Stone⁴⁾ und Shriver⁵⁾ zurückgehen. Wir haben bisher die Clusterexpansions-Reagenzien Cp- $Rh(CO)_2$ (Cp = C₅H₅ oder C₅Me₅) zum Aufbau vier- und fünfkerniger Cluster benutzt⁶⁻⁸⁾. Für Reaktivitätsstudien erschienen uns jedoch Dreikerncluster, speziell solche mit Rh(CO)₃-Baueinheiten, vorteilhafter. Wir führten deshalb die in dieser Arbeit beschriebenen Studien zur Gewinnung alkinverbrückter Hetero-Rhodium-Cluster durch.

Ausgangskomplexe

Das Einbringen von Rh(CO)₃-Gruppen verlangt entweder geeignete Vorstufen zum Metallaustausch oder einfache Rh(CO)₃-haltige Komplexe, an die andere Organometall-Baueinheiten anzubringen sind. Für den ersteren Zweck erwies sich der Heterometallcluster 1⁹ als geeignet. Für den letzteren Zweck hofften wir auf die Reaktivität der labilen Zweikernkomplexe 3, die nach Horvath¹⁰ in Gegenwart von überschüssigem CO und Alkin mit den stabilen Vierkernclustern 2 im Gleichgewicht stehen. Wir synthetisierten daher aus Co₂Rh₂(CO)₁₂¹¹⁾ und MeC≡CMe bzw. MeC≡CPh die von Horvath¹⁰⁾ noch nicht beschriebenen Cluster **2a** und **b**.

Für den alternativen Weg des Ankondensierens von RhCp-Einheiten mußten alkinverbrückte Zweikernkomplexe ausgewählt werden, wobei sich zeigte, daß solche mit terminalen Alkinen besser geeignet sind. Als am leichtesten zugängliche Zweikernkomplexe boten sich dann 4a und b^{12} an. Daraus ließen sich durch Metallaustausch mit NaMoCp(CO)₃ die Hetero-Zweikernkomplexe 5 a^{13} und 5b gewinnen. Die Ausbeuten an Zweikernkomplexen

waren gut, als Nebenprodukte fielen alkylidinverbrückte CoMo₂-Cluster an (siehe exp. Teil), die vermutlich auf die intermediäre Umwandlung von Co₂(CO)₆(μ -HC \equiv CR) in Co₃(CO)₉(μ ₃-C-CH₂R)¹⁴ zurückgehen.

Cluster mit Rh(CO)₃-Baueinheiten

Als einzigen neuen Cluster mit $Rh(CO)_3$ -Baueinheit erhielten wir das thermisch mäßig stabile 6 durch Metallaustausch einer Fe(CO)₃-Gruppe¹⁵⁾. Hierzu wurde 1 mit 1,8-Diazabicyclo[5.4.0]undec-7-en (DBU) deprotoniert und dann mit [Rh(CO)₂Cl]₂ umgesetzt.

Aus den Versuchen, die zweikernigen Intermediate 3 durch Ankondensieren von Organometallfragmenten zu alkinverbrückten CoRhM-Komplexen aufzubauen, resultierte nur ein uneindeutiges Ergebnis: das aus 2b nach Horvath¹⁰ erhaltene 3b ergab mit Fe₂(CO)₉ ein Produkt, dessen IR-Spektrum (siehe exp. Teil) dem von FeCo₂(CO)₉(μ - $MeC \equiv CPh$)¹⁶⁾ ähnelt. Das deutet darauf hin, daß der Cluster 7 entstanden ist, doch fiel das Produkt nicht analysenrein und mit weniger als 0.5% Ausbeute an.

Um stabilere Intermediate wie 3 zu erhalten, wurde versucht, die Cluster 2 mit Phosphanliganden zu spalten. Mit äquimolaren oder überschüssigen Mengen an PMe₂Ph ergaben sich aber keine spektroskopischen Indizien für die Bildung von Zweikernkomplexen. Durch 1:1-Umsetzung von 2b mit PMe₂Ph wurden in reiner Form die Cluster 8 (in Form von zwei Isomeren) und 9 isoliert. In allen drei Produkten ist von einer PR₃-Koordination am Rhodium auszugehen¹⁷), was mit Bezug auf die Formel von 2 auch das Auftreten der beiden Isomeren von 8 verständlich macht. Die Bildung des Clusters 9 als PR3-Derivat von Co₃Rh(CO)₁₂¹⁸⁾ deutet darauf hin, daß unter dem Einfluß des Phosphans tatsächlich ein Abbau des Ausgangsclusters 2 eintritt. Ein Abfangen der vermuteten zweikernigen Intermediate durch Addition von Fe(CO)₃-Fragmenten aus $Fe_2(CO)_9$ gelang jedoch nicht.

Cluster mit RhCp-Baueinheiten

Mit beiden alkinverbrückten Zweikernkomplextypen 4 und 5 wurden die Umsetzungen zur Ankondensation von Cyclopentadienylrhodium-Fragmenten durchgeführt. Reagenzien dazu waren $CpRh(CO)_2$ und $Cp*Rh(CO)_2$ (Cp = C_5H_5 , $Cp^* = C_5Me_5$). Mit $CpRh(CO)_2$ ließ sich nur aus 4a eine spektroskopisch reine Verbindung 10 isolieren, die aber als Öl anfiel. Die Erfahrung, daß mit dem C₅Me₅-Liganden thermisch belastbarere Verbindungen entstehen, bestätigte sich in den Reaktionen mit Cp*Rh(CO)₂. Aus 4a und b entstanden damit 11a und b, von denen 11a wie 10 ölig und nicht ganz analysenrein war. Analog verliefen auch die Reaktionen von 5a und b mit Cp*Rh(CO)₂, die zu 12a und b führten. Die besten Ausbeuten wurden erzielt, wenn in Benzol bei 60°C über längere Zeit gerührt wurde. Die (Cyclopentadienyl)rhodium-Reagenzien sind damit in ihrer Reaktivität und bezüglich ihrer Reaktionsprodukte völlig analog zum Reagenz Fe2(CO)9, mit dem sich Fe(CO)3-Gruppen ankondensieren lassen¹⁶⁾.

Die Cluster 10, 12 boten Gelegenheit zur thermischen Isomerisierung von der alkinverbrückten in die vinylidenverbrückte Form, die in der Regel¹⁶⁾ die stabilere ist. Überraschenderweise traf das hier nicht zu. Als Produkt einer thermischen Isomerisierung ließ sich nur aus 11b der Vierkerncluster 13 isolieren. Seine Bildung setzt die intermediäre Fragmentierung von 11b voraus, die einen RhCp*-

12a: R = Me, 12b: R = COOMe

Baustein freisetzt, der seinerseits an 11b ankondensiert wird. 13 entspricht den offenen Vierkernclustern mit μ_4 -Vinylidenliganden FeCo₃Cp(CO)₉(CCH₂)¹⁹⁾ und FeCo₂Rh-Cp*(CO)₉(CCHMe)²⁰⁾. Beide diese Cluster stellen wie 13 Ausnahmen von der Regel dar, daß bei Vierkernclustern die Alkinverbrückung gegenüber der Vinylidenverbrückung bevorzugt ist^{8,20)}.

Spektren und Konstitution der Komplexe

Zur Identifizierung der hier erhaltenen neuen Komplexe war keine Kristallstrukturanalyse nötig, da für alle Fälle Vergleichsverbindungen existieren. Durch EI-Massenspektrometrie wurden das Molekül-Ion bzw. das CO-Abspaltungsmuster für **2a**, **5b**, **6**, **8** und **9** erhalten. Die IR- und ¹H-NMR-Daten der neuen Komplexe sind in Tab. 1 und 2 zusammengefaßt.

Tab. 1. IR-Daten (Hexan, cm⁻¹) der neuen Komplexe

Nr.	ν (CO)							
2a	2100s	2070st	2051st	2035sst	1885s			
2b	2104s	20 78st	2060st	2040sst	1887 s			
5b	2080st	2070sst	2030sst	2010sst	1995Sch	1985st		
	1 9 55st	1 9 00 s						
6	2 09 0st	2 0 62st	203 0 sst	1 9 97 s	1974s	1845s		
8	2090m	2058m	1997sst	1900 s s	1845ss			
8'	2082m	2065Sch	2050s	1 99 8sst	1895ss	1 8 57ss		
9	2089 s	2048sst	2030m	1845m				
10	2072st	2040sst	203 0 st	1995st	1980m	1855m		
11 a	2060st	2035sst	1993m	1980st	1950s	1835m		
115	2072st	2040sst	2020m	2005m	1992sst	1985Sch		
	1950s	1835m						
12a	2058m	2040sst	2 015st	1978m	1970sst	1965m		
12Þ	2 0 60s	2040st	2010sst	1980m	1975sst	1968st		
13	2070sst	2038sst	2010s	1992m	1958s	1870s		

Tab. 2. ¹H-NMR-Daten (CDCl₃, int. TMS, ppm) der neuen Komplexe

2a	2.78 (Me)
2b	7.3 (m, Ph), 2.80 (Me)
5b	5.78 (H), 5.74 (Cp), 3.75 (OMe)
6	5.10 (Cp), 2.55 (Me), 2.31 (Me)
8	7.3 (m, Ph), 2.46 (CMe), 1.61 (d, J = 10.4 Hz, PMe)
8'	7.5 (m, Ph), 2.30 (CMe), 2.19 (d, J = 7.7 Hz, PMe)
9	7.3 (m, Ph), 1.87 (d, J = 10.9 Hz, PMe)
10	9.23 (H), 5.08 (Cp), 2.43 (Me)
11a	9.38 (H), 2.56 Me, 1.80 (Cp*)
115	9.57 (H), 3.79 (OMe), 1.84 (Cp*)
12a	9.38 (H), 5.42 (Cp), 2.45 (Me), 1.89 (Cp*)
12a′	9.29 (H), 5.36 (Cp), 2.39 (Me), 1.83 (Cp*)
12b	9.42 (H), 5.38 (Cp), 3.84 (OMe), 1.88 (Cp*)
12b′	9.37 (H), 5.35 (Cp), 3.78 (OMe), 1.85 (Cp*)
13	4.78 (H), 3.75 (OMe), 1.98 (Cp*), 1.85 (Cp*)

Für den einzigen hier erhaltenen neuartigen Cluster 6 mit $Rh(CO)_3$ -Baugruppe ist die spektroskopische Verwandtschaft zu den Clustern RuMoCoCp(CO)₈(μ -R₂C₂)¹⁶) zu erwähnen. Die beiden Isomeren von 8, die IR-spektroskopisch sehr ähnlich sind, unterscheiden sich NMR-spektroskopisch sehr, wie es auch für andere Fälle dieser Art schon beobachtet wurde^{8,20,21}. Die Cluster 10 und 11 geben ihre Ähnlichkeit in den IR-Spektren zu erkennen. Der neuartige Cluster 13, dessen IR-Spektrum eine grobe Analogie zu dem von FeCo₃Cp(CO)₉(μ_4 -CCH₂)¹⁹) zeigt, ist im wesentlichen durch sein NMR-Spektrum charakterisiert, in dem das Signal für das Vinyliden-H-Atom im charakteristischen Bereich liegt.

Erwähnenswert ist das aus den NMR-Spektren zu erkennende Fluktuationsverhalten der alkinverbrückten neuen Dreikerncluster. Während 6 nur durch das Auftreten von zwei Methylsignalen die Chiralität der Verbindung anzeigt, weisen die Cluster 10 und 11 durch die stark verbreiterten Signale der acetylenischen H-Atome auf die mittelschnelle Rotation des Alkins über dem Metallatomdreieck hin, vgl. Lit.^{16,22)}. Im Falle von 12a und b scheint diese Rotation auf der NMR-Zeitskala eingefroren zu sein. Denn während 12a und b chromatographisch nicht in zwei Isomere auftrennbar sind und sich auch IR-spektroskopisch nur als eine Verbindung zeigen, sind in ihren NMR-Spektren für jede organische Gruppe zwei Signale im ungefähren Intensitätsverhältnis 4:1 vorhanden. Es liegt nahe, die zwei sperrigen Baueinheiten RhCp* und MoCp(CO)₂ für die Behinderung der Alkin-Rotation verantwortlich zu machen.

Diskussion

Die wichtigsten hier neu erhaltenen Verbindungen sind die Dreikerncluster 6 sowie 10/11/12. Sie wurden durch Metallaustausch- und Clusteraufbau-Reaktionen erhalten. Durch Clusterexpansion mit RhCp-Fragmenten haben wir jetzt rhodiumhaltige Drei-, Vier- und Fünfkerncluster zugänglich gemacht^{6,8,20)}. Die geringe Neigung des Rhodiums, in Form von Rh(CO)₂- oder Rh(CO)₃-Baueinheiten in dem hier untersuchten Clustertyp zu existieren, findet ihre Entsprechung in der Tatsache, daß auch die großen Rhodium-Carbonyl-Cluster gegen Fragmentierung und Abbau mit Donorliganden labil sind¹⁾.

Bezüglich der Alkin-Vinyliden-Umlagerung des C2HR-Liganden auf dem Komplex stellen die Cluster 10, 11 und 12 Ausnahmen von der Regel dar, indem sie sich nicht in die Vinyliden-Form überführen ließen. Wir haben diese Umlagerung für viele verschiedene Heterometallcluster mit μ_3 - C_2 HR-Liganden vollzogen^{16,22)}, und sie wurde durch bindungstheoretische Behandlung plausibel gemacht²³⁾. In welcher Weise der RhCp-Baustein zur Bevorzugung der µ3-Alkin-Anbindung führt, ist nicht einsichtig, da z.B. der MoCp(CO)₂- und der NiCp-Baustein dies nicht tun. Adäquaterweise zeigt der Vierkernkomplex 13 dann für diese Verbindungen die Bevorzugung des µ4-Vinylidenliganden, während wir sonst für Vierkernkomplexe fast ausschließlich die µ₄-Alkin-Anbindung fanden^{20,24)}. Eine Systematisierung dieser Beobachtungen setzt aber die Realisierung noch zahlreicher bisher unerprobter Metallatom- und Liganden-Kombinationen voraus.

Diese Arbeit wurde vom *Fonds der Chemischen Industrie*, von der *Europäischen Gemeinschaft* (ST2J-0347-C) und von der Firma *Heraeus* (durch eine Spende von RhCl₃) unterstützt. Wir danken Herrn *W. Deck* für NMR-Spektren.

Experimenteller Teil

Die allgemeinen Arbeitstechniken²⁵⁾ waren wie beschrieben. Alle Ausgangsverbindungen wurden nach den genannten Literaturstellen synthetisiert. Alle neuen Komplexe sind in Tab. 4 charakterisiert.

Cluster 2a: 580 mg (0.88 mmol) $\text{Co}_2\text{Rh}_2(\text{CO})_{12}^{11}$ wurden in 50 ml Hexan bei Raumtemp. gelöst. Die Lösung wurde mit 90 mg (1.6 mmol) 2-Butin versetzt. Nach 10 h wurde das Lösungsmittel auf wenige ml im Ölpumpenvak. eingeengt und die violette Lösung über eine Kieselgelsäule (2.5 × 45 cm) chromatographiert. 1. Fraktion (Hexan, rot): Spur Co₂(CO)₆(MeC = CMe), 2. Fraktion (Hexan, braun): Spur Co₄(CO)₁₂, 3. Fraktion (Hexan/Benzol 10:1, braun): Spur Co₃Rh(CO)₁₂, 4. Fraktion (Hexan/Benzol 10:1, violett): 512 mg (88%) 2a.

2b: Wie **2a** aus 700 mg (1.06 mmol) $\text{Co}_2\text{Rh}_2(\text{CO})_{12}^{11}$ und 123 mg (1.06 mmol) MeC \equiv CPh. Chromatographie: 1. Fraktion (Hexan/Benzol 10:1, braun): Gemisch (verworfen), 2. Fraktion (Hexan/Benzol 5:1, violett): 689 mg (90%) **2b**.

5a: Eine Lösung von 650 mg (2.00 mmol) $4a^{12}$ und 536 mg (2.00 mmol) NaMoCp(CO)₃ in 50 ml THF wurde bei 50°C 3 h gerührt. Nach Entfernen des Lösungsmittels i. Vak. wurde der Rückstand über eine 3 × 60 cm-Kieselgelsäule chromatographiert. 1. Fraktion (Hexan/Benzol 10: 1, orange): 68 mg (10%) 4a, 2. Fraktion (Hexan/Benzol 7: 1, rot): 320 mg (48%) 5a, 3. Fraktion (Hexan/Benzol 5: 1, grün): 80 mg (10%) CoMo₂Cp₂(CO)₇(μ_3 -C-CH₂CH₃)²⁶. – IR (C₆H₁₂): $\tilde{v} = 2035$ cm⁻¹ m, 1985 sst, 1970 m, 1960 st, 1940 m, 1912 m, 1850 s. – ¹H-NMR (CDCl₃): $\delta = 5.50$ (CH₂), 5.30 (Cp), 1.65 (CH₃).

5b: Wie **5a** aus 740 mg (2.00 mmol) **4b**¹²⁾ und 536 mg (2.00 mmol) NaMoCp(CO)₃. Chromatographie: 1. Fraktion (Hexan/Benzol 5:1, orange): 74 mg (10%) **4b**, 2. Fraktion (Hexan/Benzol 1:1, rot): 528 mg (60%) **5b**, 3. Fraktion (Hexan/Benzol 1:1, grün) 180 mg (27%) CoMo₂Cp₂(CO)₇(μ_3 -C - CH₂CO₂Me)²⁶⁾. - IR (C₆H₁₂): $\tilde{\nu} =$ 2045 cm⁻¹ m, 1985 sst, 1975 m, 1965 m, 1943 m, 1920 m, 1850 s. - ¹H-NMR (CDCl₃): $\delta =$ 5.47 (Cp), 5.36 (CH₂), 3.72 (OMe).

6: 200 mg (0.33 mmol) 1⁹⁾ und 130 mg (0.33 mmol) [Rh(CO)₂Cl]₂ wurden unter CO-Schutzgas in 10 ml THF gelöst. Bei Raumtemp. wurden nacheinander 50 mg (0.33 mmol) 1,8-Diazabicyclo-[5.4.0]undec-7-en (DBU) und 176 mg (0.66 mmol) TINO₃ sowie 122 mg (0.66 mmol) KPF₆ zugegeben, und 1 d wurde gerührt. Anschließend wurde das Lösungsmittel i. Vak, entfernt, mit 5 ml Benzol und 2 ml 40proz, H₃PO₄ versetzt und die wäßrige Phase 10mal mit je 5 ml Benzol extrahiert. Das Benzol wurde im Ölpumpenvak. entfernt, der ölige Rückstand in wenig Hexan/Benzol (5:1) aufgenommen und über eine Kieselgelsäule (2 \times 20 cm) chromatographiert. 1. Fraktion (Hexan/Benzol 5:1, orangefarben): Spur (nicht identifiziert), 2. Fraktion (Hexan/Benzol 5:1, rot): 9 mg (5%) 1, 3. Fraktion (Hexan/Benzol 3:1, violett): 36 mg (17%) 6.

7: Eine Lösung von 310 mg (0.43 mmol) 2b, 60 mg (0.50 mmol) $PhC \equiv CMe \text{ und } 280 \text{ mg} (0.77 \text{ mmol}) \text{ Fe}_2(CO)_9 \text{ in } 20 \text{ ml THF wurde}$ 2 h bei Raumtemp. gerührt. Die laufende Reaktionskontrolle durch IR-Messungen zeigte nur das kontinuierliche Ansteigen der Fe-(CO)₅-Konzentration. Nach Entfernen aller flüchtigen Bestandteile im Ölpumpenvak. wurde in wenig Hexan aufgenommen und über eine Kieselgelsäule (2.5×30 cm) chromatographiert. 1. Fraktion (Hexan, rotbraun): Spur $Co_2(CO)_6(MeC \equiv CPh)$, 2. Fraktion (Hexan, braun): 2 mg 7, 3. Fraktion (Hexan/Benzol 15:1, violett): 261 mg (84%) 2b.

8 und 9: Eine Lösung von 370 mg (0.51 mmol) 2b in 40 ml Hexan wurde bei Raumtemp. mit 70 mg (0.51 mmol) PMe₂Ph versetzt. Nach 2 h wurden dünnschichtchromatographisch mehrere Produkte nachgewiesen. Das Lösungsmittel wurde im Ölpumpenvak. entfernt, der Rückstand in wenig Hexan aufgenommen und über eine Kieselgelsäule (2.5×25 cm) chromatographiert. 1. Fraktion (Hexan/Benzol 8:1, violett): 118 mg (32%) 2b, 2. Fraktion (Hexan/ Benzol 6:1, braun): 26 mg (7%) 9, 3. Fraktion (Hexan/Benzol 5:1, violett): 60 mg (14%) 8, 4. Fraktion (Hexan/Benzol 5:1, violett): 56 mg (13%) 8'.

Allgemeine Vorschrift zur Darstellung von 10-12: Es wurden jeweils Lösungen der Alkin-Komplexe 4 bzw. 5 in 50 ml Benzol mit der 1.2fachen Menge CpRh(CO)₂ (Cp = C_5H_5 bzw. C_5Me_5) versetzt und bei 60°C gerührt. Angaben über Reaktionsgröße, -dauer und -produkte stehen in Tab. 3. Nach Entfernen des Lösungsmittels i. Vak. wurden die Rückstände über eine Kieselgelsäule $(2 \times 40 \text{ cm})$ mit den in Tab. 3 angegebenen Elutionsmitteln chromatographiert. Als erste, orangefarbene Fraktion wurde immer nicht umgesetztes Edukt eluiert, und die Farbe der Produktfraktionen war in allen Fällen grün.

13: Eine Lösung von 0.12 g (0.20 mmol) 11b in 30 ml Toluol wurde 10 h bei 100°C gerührt. Nach Entfernen des Lösungsmittels

Tab. 3. Darstellung der Komplexe 10–12

Alkin-Komplex		CpRh(CO) ₂ Zeit		Fr. H./B. ^{a)}		Produkt		
Nr.	g/mmol	g/mmol		Nr.		Nr.	g	%
4a	0.60/1.84	0.49/2.21 ^{b)}	2d	1	3:1	4a	0.30	50
				2	3:1	10	0.14	15
4a	0.26/0.80	0.28/0.96 ^{c)}	1d	1	3:1	4a	0.05	19
				2	2:1	11a	0.27	68
4b	0.15/0.41	0.14/0.48 ^{C)}	2h	1	1:2	4b	0.02	13
				2	1:2	11b	0.18	72
5a	0.22/0.54	0.19/0.65 ^{c)}	1d	1	3:1	5a	0.18	34
				2	1:1	12a	0.03	9
5 b	0.24/0.55	0.19/0.65 ^c)	1d	1	1:1	5b	0.07	29
				2	1:1	12b	0.18	48

^{a)} Hexan/Benzol-Gemisch. $-^{bl}$ Cp = C₅H₅. $-^{cl}$ Cp = C₅Me₅.

Tab. 4. Charakterisierung der neuen Komplexe

Kom- plex	Farbe (fest)	Schmp. [°C]	Summenformel Molmasse		C	Analyse H	Co	
2a	schwarz	160	C ₁₄ H ₆ Co ₂ O ₁₀ Rh ₂	Ber.	25.56	0.92	17.92	
			(657.9)	Gef.	25.37	0.96	18.14	
			Molmasse 658 (E	I-MS)				
2b	schwarz	200	^C 19 ^H 8 ^{Co} 2 ^O 10 ^{Rh} 2	Ber.	31.70	1.12	16.37	
		Zers,	(720.0)	Gef.	31.17	1.40	16.76	
5b	rot	60	с ₁₄ Н ₉ СоМоО ₇	Ber.	37.86	2.06	13.39	
			(440.1)	Gef.	37.96	2.05	12.85	
			Molmasse 440 (E	I-MS)				
6	schwarz	280	с ₁₇ н ₁₁ MoO ₈ RhRu	Ber.	31.75	1.72	-	
		Zers.	(643.0)	Gef.	31.64	1.84	-	
	Molmasse 615 (M ⁺ -CO, FD-MS)							
8	schwarz	91	^C 26 ^H 19 ^{Co} 2 ^O 9 ^{PRh} 2	Ber.	37.62	2.31	14.20	
			(830.1)	Gef.	37.72	2.39	13.97	
			Molmasse 746 (M	+-3CO,	E1-MS)		
8′	schwarz	95	C ₂₆ H ₁₉ Co ₂ O ₉ PRh ₂	Ber.	37.62	2.31	14.20	
			(830.1)	Gef.	38.09	2.42	13.89	
			Molmasse 802 (M	+-CO,	EI-MS)			
9	schwarz	157	C ₁₉ H ₁₁ Co ₃ O ₁₁ PRh	Ber.	31.44	1.53	24.35	
			(726.0)	Gef.	31.42	1.34	24.20	
		Molmasse 726 (EI-MS)						
10	grün	Öł	C ₁₄ H9Co2O6Rh	Ber.	34.03	1.84	23.85	
			(494.1)	Gef.	36.15	2.55	23.25	
11a	grün	Ö1	C ₁₉ H ₁₉ Co ₂ O ₆ Rh	Ber.	40.44	3.39	20.89	
			(564.2)	Gef.	42.28	3.98	20.41	
11b	schwarz	202	C ₂₀ H ₁₉ Co ₂ O ₈ Rh	Ber.	39.49	3.14	19.38	
		Zers.	(608.2)	Gef.	39.16	3.13	19.01	
12a	schwarz	228	C ₂₃ H ₂₄ CoMoO ₅ Rh (638.3)	Ber.	43.28	3.79	9.23	
		Zers.		Gef.	43.42	3.77	8.85	
12b	schwarz	194	C ₂₄ H ₂₄ CoMoO ₇ Rh	Ber.	42.25	3.55	8.64	
			(682.3)	Gef.	41.98	3.41	8.22	
13	schwarz	168	C30H34Co208Rh2	Ber.	42.58	4.05	13.93	
			(846.3)	Gef.	43.45	4.55	14.40	

i. Vak. wurde der Rückstand über eine Kieselgelsäule (2×30 cm) chromatographiert. 1. Fraktion (grün, Benzol): 5 mg (4%) 11b, 2. Fraktion (braun, Benzol): 24 mg (28%) 13.

CAS-Registry-Nummern

1: 126329-06-4 / 2a: 126979-14-4 / 2b: 126979-15-5 / 4a: 41626-24-8 / 4b: 63395-33-5 / 5a: 126979-16-6 / 5b: 126979-24-6 / 6: 126979-17-7 / 7: 126979-18-8 / 8: 126979-19-9 / 8': 126979-25-7 / 9: 126979-20-2 / 10: 126979-21-3 / 11a: 126979-22-4 / 11b: 126979-26-8 / 12 a: 127002-12-4 / 12 b: 127002-13-5 / 13: 126979-23-5 / MeC \equiv CMe: 503-17-3 / MeC \equiv CPh: 673-32-5 / Co₂Rh₂(CO)₁₂: 50696-78-1 / NaMoCp(CO)₃: 12107-35-6 / [Rh(CO)₂Cl]₂: 14523-22-9 / Fe₂(CO)₉: 15321-51-4 / PMe₂Ph: 672-66-2 / C₅H₅Rh(CO)₂: 12102-214 / C₅H₅Rh(CO)₂ / C₅H₅Rh(CO) / C₅H₅Rh(CO)₂ / C₅H₅Rh(CO)₂ / C₅H₅Rh(CO)₂ / C₅H₅Rh(CO) / 12192-97-1 / $\tilde{C}_{3}Me_{5}Rh(CO)_{2}$: 32627-01-3 / Rh: 7440-16-6 / Co: 7440-48-4

¹⁾ Vgl. N. Nicholls, Polyhedron 3 (1984) 1307; M. D. Vargas, J. N.

Nicholls, Adv. Inorg. Chem. Radiochem. 30 (1986) 123. ²⁾ Vgl. E. L. Muetterties, M. J. Krause, Angew. Chem. 95 (1983) 135; Angew. Chem. Int. Ed. Engl. 22 (1983) 135.

³⁾ D. A. Roberts, G. L. Geoffroy in Comprehensive Organometallic Chemistry (G. Wilkinson, F. G. A. Stone, E. W. Abel, Hrsg.), Bd. 6, S. 763, Pergamon Press, Oxford 1982.

- ⁴⁾ J. A. Abad, E. Delgado, M. E. Garcia, M. J. Grosse-Ophoff, I. J. Hart, J. C. Jeffery, M. S. Simmons, F. G. A. Stone, *J. Chem. Soc., Dalton Trans.* **1987**, 41.
- ⁵⁾ J. A. Hriljak, E. M. Holt, D. F. Shriver, Inorg. Chem. 26 (1987) 2943.
- ⁶⁾ D. Mani, H. Vahrenkamp, Chem. Ber. 119 (1986) 3649.
- 7) J. T. Jaeger, A. K. Powell, H. Vahrenkamp, New. J. Chem. 12 (1988) 405.
- ⁸⁾ H. Bantel, A. K. Powell, H. Vahrenkamp, Chem. Ber. 123 (1990) 677
- 9) H. Bantel, A. K. Powell, H. Vahrenkamp, Chem. Ber. 123 (1990) 1607.
- ¹⁰⁾ I. T. Horvath, L. Zsolnai, G. Huttner, Organometallics 5 (1986) 180.
- ¹¹⁾ S. Martinengo, P. Chini, V. G. Albano, F. Cariati, T. Salvatori, J. Organomet. Chem. **59** (1973) 379.
- ¹²⁾ H. Greenfield, H. W. Sternberg, R. A. Friedel, I. H. Wotiz, R. Markby, I. Wender, J. Am. Chem. Soc. 78 (1956) 120; U. Krüerke, W. Hübel, Chem. Ber. 94 (1961) 2829.
- ¹³ E. Sappa, A. Tiripicchio, New. J.Chem. 12 (1988) 599.
 ¹⁴ D. Seyferth, Adv. Organomet. Chem. 14 (1976) 97.
 ¹⁵ D. Seyferth, Adv. Organomet. Chem. 14 (1976) 252
- ¹⁵⁾ H. Vahrenkamp, Comments Inorg. Chem. 4 (1985) 253.

- ¹⁶⁾ T. Albiez, W. Bernhardt, C. v. Schnering, E. Roland, H. Bantel, H. Vahrenkamp, Chem. Ber. **120** (1987) 141. ¹⁷⁾ I. Horvath, Organometallics **5** (1986) 2333.
- ¹⁸⁾ S. Martinengo, P. Chini, V. G. Albano, F. Cariati, T. Salvatori, I. Organomet. Chem. 59 (1973) 379.
- ¹⁹⁾ P. Brun, G. M. Dawkins, M. Green, R. M. Mills, J.-Y. Salaun, F. G. A. Stone, P. Woodward, J. Chem. Soc., Chem. Commun. 1981, 966.
- ²⁰⁾ T. Albiez, A. K. Powell, H. Vahrenkamp, Chem. Ber. 123 (1990) 667.
- ²¹⁾ H. Bantel, W. Bernhardt, A. K. Powell, H. Vahrenkamp, Chem. Ber. 121 (1988) 1247.
- ²²⁾ E. Roland, W. Bernhardt, H. Vahrenkamp, Chem. Ber. 118 (1985) 2858.
- ²³⁾ J. Silvestre, R. Hoffmann, *Helv. Chim. Acta* 68 (1985) 1461.
 ²⁴⁾ H. Bantel, A. K. Powell, H. Vahrenkamp, *Chem. Ber.* 123 (1990)
- 661.
- ²⁵⁾ W. Deck, M. Schwarz, H. Vahrenkamp, Chem. Ber. 120 (1987) 1515.
- ²⁶⁾ R. Blumhofer, K. Fischer, H. Vahrenkamp, Chem. Ber. 119 (1986) 194.

[86/90]